3y^2=10y+25

Simple and best practice solution for 3y^2=10y+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y^2=10y+25 equation:



3y^2=10y+25
We move all terms to the left:
3y^2-(10y+25)=0
We get rid of parentheses
3y^2-10y-25=0
a = 3; b = -10; c = -25;
Δ = b2-4ac
Δ = -102-4·3·(-25)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-20}{2*3}=\frac{-10}{6} =-1+2/3 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+20}{2*3}=\frac{30}{6} =5 $

See similar equations:

| -0,75x+5=0 | | 1/4(12x-16)+x=20 | | 7x-(5+4)=14 | | 6/d=2 | | 5x+3(5x+8)=-216 | | 12=-0,16y+6 | | 3f=-2f+5f | | 0,4y-12=8 | | m−4/3=1 | | 53=0,5x+3 | | (3x-11)+(x+43)=180 | | 3(6x-5)=41 | | 10x+4=5x-9=170 | | 5=3q=10+2q | | 24.3+n=125.32= | | 26-2(2x+2)=2(x+2)+3x | | 47=-2d+5 | | (6+i)(6-i)=0 | | 0,14x-12=0 | | 5+2w=2w+5 | | 3n-20=2(n-6) | | 7+m/4=-3 | | g/6=3=27 | | -18=-3t | | 700-50x=450 | | 3x-8=7x=4 | | 4x^2-900=0 | | -8k=-9k+18 | | 4x2-900=0 | | X(x+2)(x+4)=85008 | | 11+j+19=-14+5j | | |4t|=-32 |

Equations solver categories